Repurposing this APA figures post as a IDHTG (I don’t have to google) post.
As I write my first paper reporting data analysis coming out of R (woot!!!), here are some notes summarising all the googling I have done this morning about how to produce APA style figures in ggplot.
Load libraries
Start by loading tidyverse to get ggplot, here to make finding the data easy, and papaja to get the theme_apa() function.
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(here)
here() starts at /home/runner/work/jenrichmond.github.io/jenrichmond.github.io
library(papaja)
Loading required package: tinylabels
Read in data
plotdata <-read_csv("plotdata.csv")
New names:
Rows: 8 Columns: 9
── Column specification
──────────────────────────────────────────────────────── Delimiter: "," chr
(4): direction, group, detailtype, groupnew dbl (5): ...1, mean, stdev, n,
stderr
ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
Specify the column types or set `show_col_types = FALSE` to quiet this message.
• `` -> `...1`
head(plotdata)
# A tibble: 6 × 9
...1 direction group detailtype mean stdev n stderr groupnew
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 1 future control episodic 9.46 4.04 28 0.764 control group
2 2 future control semantic 4.57 2.35 28 0.444 control group
3 3 future induction episodic 9.38 3.62 29 0.672 induction group
4 4 future induction semantic 4.69 2.85 29 0.530 induction group
5 5 past control episodic 11.2 6.67 28 1.26 control group
6 6 past control semantic 5.5 5.53 28 1.05 control group
Basic ggplot (columns)
Plot separate bars for episodic vs semantic details, by past and future events, separately for kids in the control group vs. induction group. Get pairs of columns using position = “dodge”.
plotdata %>%ggplot(aes(x= detailtype, y = mean, fill = direction)) +geom_col(position ="dodge") +facet_wrap(~ groupnew)
Add error bars
plotdata %>%ggplot(aes(x= detailtype, y = mean, fill = direction)) +geom_col(position ="dodge") +facet_wrap(~ groupnew) +geom_errorbar(aes(ymin=mean-stderr, ymax=mean+stderr),size=.3, # Thinner lineswidth=.2,position=position_dodge(.9))
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
APA-ise
The theme_apa() from the pajaja package does most of the APAising. Gets rid of the grey and gridlines. But for some reason, now the bars are floating.
plotdata %>%ggplot(aes(x= detailtype, y = mean, fill = direction)) +geom_col(position ="dodge") +facet_wrap(~ groupnew) +geom_errorbar(aes(ymin=mean-stderr, ymax=mean+stderr),size=.3, # Thinner lineswidth=.2,position=position_dodge(.9)) +theme_apa(base_size =14)
Fix x and y axis
Extend y axis scale and make the bars sit on the x axis
plotdata %>%ggplot(aes(x= detailtype, y = mean, fill = direction)) +geom_col(position ="dodge") +facet_wrap(~ groupnew) +geom_errorbar(aes(ymin=mean-stderr, ymax=mean+stderr),size=.3, # Thinner lineswidth=.2,position=position_dodge(.9)) +theme_apa(base_size =14) +scale_y_continuous(expand =c(0, 0), limits =c(0, 15)) # expand 0,0 to make the bars sit down
Fix axis labels
Use the \n notation to break a label or title across two lines
plotdata %>%ggplot(aes(x= detailtype, y = mean, fill = direction)) +geom_col(position ="dodge") +facet_wrap(~ groupnew) +geom_errorbar(aes(ymin=mean-stderr, ymax=mean+stderr),size=.3, # Thinner lineswidth=.2,position=position_dodge(.9)) +theme_apa(base_size =14) +scale_y_continuous(expand =c(0, 0), limits =c(0, 15)) +labs(x="Detail type", y="Mean number of details \n produced")
Make grey scale
Use scale_fill_grey(), values 1 = white and 0 = black, specify values in between to get shades of grey
plotdata %>%ggplot(aes(x= detailtype, y = mean, fill = direction)) +geom_col(position ="dodge") +facet_wrap(~ groupnew) +geom_errorbar(aes(ymin=mean-stderr, ymax=mean+stderr),size=.3, # Thinner lineswidth=.2,position=position_dodge(.9)) +theme_apa(base_size =14) +scale_y_continuous(expand =c(0, 0), limits =c(0, 15)) +labs(x="Detail type", y="Mean number of details \n produced") +scale_fill_grey(start =0.40, end =0.6)
Save as png to add to your paper
Use ggsave(“nameoffile.png”) to save the last plot as png.